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Abstract

Damping of convection is key in the precise measurement of a diffusion coefficient in melt, and applying a static magnetic field to the
melt is a promising method of realizing damping in electrically conducting melt such as a semiconductor and metal. Convection behavior
in a melt with a low Grashoff number under a uniform static magnetic field was calculated on the basis of the finite element method.
Using the results, the specimen geometry and the direction of the applied magnetic field in diffusion experiments with a diffusion-couple
method were evaluated by the numerical simulation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In spite of the importance of understanding diffusion
phenomena of solute atoms in liquid from the viewpoint
of crystal growth and solidification, there may be few reli-
able values on diffusion coefficients in liquid obtained in a
terrestrial environment. The reason is experimental difficul-
ties in measurement, e.g., diffusion during heating and
cooling processes, and mixing by convection in the liquid.
The heating and cooling periods must be much shorter
than the diffusion period. The former difficulty has been
overcome by adopting a shear-cell method [1] and a
rapid-quench capillary method [2]. On the other hand, it
is not easy to solve the latter, because temperature and con-
centration gradients in the liquid become driving forces of
convection and the convection influences the concentration
field. Therefore, the achievement of a diffusion-dominated
condition in the liquid is regarded to be a promising
method for enabling measurement. Many diffusion experi-
ments were performed in a microgravity environment in
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order to confirm the difference in diffusion coefficients
obtained in a microgravity environment from those
obtained in the terrestrial environment. Those studies ver-
ified the difference between the two. More interestingly, the
temperature dependence of diffusion coefficients in a micro-
gravity environment was different from that in a terrestrial
environment [3–6]. However, long-duration microgravity
experiments on board a space shuttle or a satellite are
now difficult to conduct, and moreover, the short-duration
microgravity condition, such as that achieved in a drop
shaft or on parabolic flights of an airplane is not favorable
for the diffusion experiment.

When a uniform static magnetic field is applied to an
electrically conducting liquid, liquid motion is reduced
because of the Lorentz force yielded by interaction
between the imposed magnetic induction and the electric
current induced by the field [7,8]. There have been some
reports concerning the measurement of interdiffusion coef-
ficients under a static magnetic field [2,9,10]. However, the
influence of the applied magnetic induction and the grav-
ity on the flow behavior in the melt were discussed based
merely on the measured diffusion coefficients or analytical
estimation. The purpose of the present study is to evalu-
ate the suitable condition under which to damp the
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Nomenclature

a unit vector parallel to specimen axis (–)
A aspect ratio of melt, L/r (–)
b uniform applied magnetic induction vector (T)
b0 jbj (T)
B nondimensional magnetic induction vector, b/b0

(–)
c(x,y,z,s) solute concentration in melt (at.%)
c0, c1 initial values of c at t = 0 for Z < 0 and for

Z > 0 (at.%)
C(X,Y,Z, t) (c � c0)/Dc (–)
D diffusion coefficient of solute atom in melt

(m2 s�1)
g gravity vector (m s�2)
g0 jgj (m s�2)
G nondimensional gravitational acceleration, g/g0

(–)
Gr Grashof number, bTg0DHr3/Am2 (–)
Ha Hartmann number, b0r(r/q0m)1/2 (–)
J nondimensional electric current density (–)
L half-length of melt (m)
p(x,y,z,s) pressure (Pa)
P(X,Y,Z, t) nondimensional pressure, p=q0U 2

0 (–)
Pr Prandtl number, m/j (–)
r radius of melt (m)
Sc Schmidt number, m/D (–)
t nondimensional time, Ds/r2 (–)
T(X,Y,Z, t) nondimensional temperature, (H � H0)/DH

(–)
u(x,y,z,s) flow velocity vector in melt (m s�1)
U(X,Y,Z, t) nondimensional flow velocity vector,

u/U0 = (UX,UY,UZ) (–)

U0 characteristic velocity in melt, mGr1/2/r (m s�1)
Umax(Ha, t) magnitude of maximum velocity in melt as a

function of Ha and t (–)
Umax,st(Ha) Umax(Ha, t) with a steady state as a function

of Ha (–)
x, y, z Cartesian coordinates (m)
X, Y, Z x/r, y/r, z/r (–)

Greek symbols

a nondimensional solute volume expansion coeffi-
cients, bSDc/bTDH (–)

bS, bT solute and thermal volume expansion coeffi-
cients (K�1)

Dc c1 � c0 (at.%)
DH H1 � H0 (K)
H(x,y,z,s) temperature (K)
H0, H1 temperature in melt at Z = ±A and Z = 0 with

(X2 + Y2)1/2 = 1 (K)
j thermal diffusivity of melt (m2 s�1)
m kinematic viscosity of melt (m2 s�1)
q0 density of melt for H = H1 and c = c0 (kg m�3)
r electrical conductivity of melt (X�1 m�1)
s time (s)
/(X,Y,Z, t) nondimensional electric potential, W/b0U0r

(–)
W(x,y,z,s) electric potential (V)
$N, r2

N io/oX + jo/oY + ko/oZ, io2/oX2 + jo2/oY2

+ ko2/oZ2 (–)
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convection in order to measure a reliable diffusion coeffi-
cient in electrically conducting melt under a terrestrial
condition, utilizing a static magnetic field based on a
numerical simulation. The direction and the magnitude
of magnetic induction, and the aspect ratio of the con-
tainer were regarded to be parameters for controlling
the damping effect.

2. Mathematical model

Liquid metal usually conducts electricity and Lorentz
force is induced in the melt upon the application of a mag-
netic field, which can be employed to control convection.
The liquid metal is assumed to be sealed in an electrically
insulated container. The Navier–Stokes equation including
the effect of Lorentz force for an incompressible fluid in the
Boussinesq approximation can be written with the aid of
Ohm’s law and the continuity of electric current density in
the present simulation. The effects of the displacement cur-
rent and Joule heating in the melt are neglected in the basic
equations. Thermocapillary flow and other effects attrib-
uted to a magnetic field were not taken into consideration
in the equations. The magnetic induction vector in the melt
can be set equal to the uniform applied magnetic field and
the electric field can be written as the gradient of an electric
potential, when the magnetic Reynolds number is much
smaller than unity. Electrical conductivity and the viscosity
of the melt are assumed to be constant. The following basic
equations can be obtained as nondimensional forms under
the above assumptions.

Equation of electric potential

Nondimensional electric current density J in the melt is
given by Ohm’s law as

J ¼ �rN/þU � B: ð1Þ
The equation of continuity for J is

rN � J ¼ 0: ð2Þ

The equation of electric potential is then given by the above
equations as follows:

�r2
N/þ B � ðrN �UÞ ¼ 0: ð3Þ
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Equation of continuity

rN �U ¼ 0: ð4Þ
Equation of momentum conservation
1

Sc
oU

ot
þ

ffiffiffiffiffiffi
Gr
p
ðU � rN ÞU

¼ �rN P þr2
N U � A

ffiffiffiffiffiffi
Gr
p
ðT þ aCÞG � Ha2J � B: ð5Þ

Energy equation

Pr
1

Sc
oT
ot
þ

ffiffiffiffiffiffi
Gr
p
ðU � rN ÞT

� �
¼ r2

N T : ð6Þ

The Joule heat term is ignored in Eq. (6) because of the
small current density in the melt.

Species equation

oC
ot
þ Sc

ffiffiffiffiffiffi
Gr
p
ðU � rNÞC ¼ r2

N C: ð7Þ

Boundary conditions

The schematic drawing of the model system used in the
calculation is shown in Fig. 1. Only a half-section of the
cylindrical melt is modeled due to the symmetry at the
X–Z plane. The walls of the container are electrically insu-
lated from the surroundings and satisfied no-slip condi-
tions. The mass flux at the walls is zero. On all the walls
of the container, (X2 + Y2)1/2 = 1, Z = ±A:

U ¼ 0; ð8Þ
J � n ¼ 0; ð9Þ
rN C � n ¼ 0; ð10Þ
rN T � n ¼ 0: ð11Þ

For simplicity, the temperature distribution on the side
wall is set to be a power-law function of Z along the wall,
(X2 + Y2)1/2 = 1:

T ¼ �ðZ=AÞn: ð12Þ
The isothermal condition is applied to the each end of the
melt, because the high thermal conductivity of the melt
may be sufficient to decrease the temperature gradient on
the faces. On each end of the container Z = ±A:

T ¼ �1: ð13Þ
Fig. 1. Model system used in calculation: (a) geometry of semi-cylindrical
cavity and coordinates, (b) element representation of graded 3D-mesh for
cavity with A = 1.
On the symmetry plane Y = 0:

UY ¼ 0; ð14Þ
oT=oY ¼ 0; ð15Þ
o/=oY ¼ 0: ð16Þ
Initial conditions

U ¼ 0; ð17Þ
/ ¼ 0; ð18Þ
J ¼ 0; ð19Þ
T ¼ �ðZ=AÞn; ð20Þ
CðX ; Y ; Z; 0Þ ¼ CinitðX ; Y ; ZÞ: ð21Þ
3. Computational scheme

Numerical simulations were performed using the com-
mercial software package FIDAP 8.6 [11], which is based
on the finite element method. All calculations were carried
out with a nonuniform four-node quadrilateral element
mesh for the contents in the container. The computations
for the cases with A =1, 5 and 10 were carried out with
three different element systems, 23,520 elements, 117,600
elements and 235,200 elements, respectively. Volumetric
forces such as gravity and Lorentz forces were applied to
the fluid following Eq. (5). A user-defined subroutine was
coded to build the source term of the electric charge into
Eq. (3). The direction of the specimen axis was set to be
parallel to eZ. Hereafter, the direction of normalized grav-
ity G parallel to eX, eY or eZ is referred to as GkeX, GkeY or
GkeZ, respectively. A uniform static magnetic field was
applied parallel to eX, eY or eZ. As in the above description
of gravity, the magnetic induction vectors parallel to eX, eY

and eZ are referred to as BkeX, BkeY and BkeZ, respectively.
The directions of GkeX and GkeZ were chosen by taking
account of the symmetry of the melt.

In the present calculation, physical properties of metal
and semiconductor melts [12] were assumed to be as
follows: density q0 = 5 � 103 kg/m3, kinematic viscosity
m = 10�7 m2 s�1, thermal volume expansion coefficient
bT = 10�4 K�1, solute volume expansion coefficient
bS = 10�4 at.%�1, electrical conductivity r = 106 X�1 m�1,
thermal diffusivity j = 10�5 m2 s�1, diffusion coefficient of
solute atom in melt D = 10�9 m2 s�1, radius of the speci-
men r = 10�3 m, aspect ratio A = 10, temperature differ-
ence DH = 1 K, and applied magnetic induction b0 = 1 T.
Therefore, nondimensional parameters Pr, Sc, Gr and Ha

corresponding to the properties were calculated to be
10�2, 102, 10 and 40, respectively.

4. Results and discussion

4.1. Computed results for thermal convection under
steady-state condition

Thermal convection under a uniform magnetic field was
investigated by changing G, B, and A. Initial concentration



Fig. 2. Isotherm plot for melt under condition of Gr = 0 with n = 2 and
Ha = 0.
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Cinit(X,Y,Z) in Eq. (21) is set to be zero and A is chosen to
be 1, 5 or 10. Transition of flow behavior from laminar to
oscillatory does not occur under the calculation condition,
and the velocity, temperature and electrical potential pro-
files converge to the steady state. The temperature distribu-
tions in the melt for GkeZ and GkeX are not influenced by
convection because of the low Gr, i.e., these temperature
fields are governed by conductive heat transfer. When the
curl operators are applied to Eq. (5) to eliminate the pres-
sure gradient term, the following equation is obtained
under the steady-state condition at Ha = 0:

r2
N rN �

1ffiffiffiffiffiffi
Gr
p U

� �� �
�GrrN �

1ffiffiffiffiffiffi
Gr
p U �rN

� �
1ffiffiffiffiffiffi
Gr
p U

� �� �

¼ArN ðT þaCÞ�G: ð22Þ

If jA$NT � Gj is small enough to neglect the second term
in the left side of Eq. (22), U=

ffiffiffiffiffiffi
Gr
p

is dominated by
A$N(T + aC) � G. Table 1 shows the magnitude of maxi-
mum velocity in the melt divided by Gr1/2 in a steady state
at Ha = 0, Umax,st(0)/Gr1/2, as a function of A and Gr with
n = 2. Since Umax,st(0)/Gr1/2 is almost constant for the same
A with Gr in a range of between 1 and 100, the convection
term is negligible in Eq. (5). Umax,st(0)/Gr1/2 increases with
the increase of A for GkeX, whereas the magnitude of the
maximum velocity decreases with the increase of A for
GkeZ. An isotherm plot for the melt at Ha = 0 is shown
in Fig. 2, and the temperature distribution for A = 1, 5
or 10 is not influenced by the convection because of the
low Gr. The distribution of A$NT � G in the melt has a
very weak Gr dependence. The maximum temperature gra-
dient appears along the circumferences of both ends of the
melt (X2 + Y2)1/2 = 1 at Z = ±A. For GkeX, Umax,st(0)/Gr1/2

is determined by the maximum temperature gradient paral-
lel to the Z axis, and increases with the increase of A on the
axis, because jA$NT � Gj on the melt axes, X = Y = 0 at
Z = ±A, for A = 1, 5 and 10 are, respectively, 1.23, 1.98
and 1.99, whereas those on the circumferences are 2.00
for all A’s. For GkeZ, Umax,st(0)/Gr1/2 is determined by
the maximum radial temperature gradient which appears
on the circumference of the Z = 0 plane of the melt.
jA$NT � Gj on the melt axes for A = 1, 5 and 10 are,
respectively, 0.812, 0.199 and 0.0997, and therefore
Umax,st(0)/Gr1/2 decreases with the increase of A. Conse-
quently, the minimum value of Umax,st(0) with Gr in the
Table 1
Umax,st(0)/Gr1/2 as a function of A and Gr for n = 2

Direction of G A Umax,st(0)/Gr1/2

Gr = 1 Gr = 10 Gr = 100

GkeX 1 9.35 � 10�3 9.32 � 10�3 9.33 � 10�3

5 6.26 � 10�2 6.28 � 10�2 6.28 � 10�2

10 7.71 � 10�2 7.69 � 10�2 7.60 � 10�2

GkeZ 1 6.60 � 10�3 6.61 � 10�3 6.60 � 10�3

5 2.08 � 10�3 2.07 � 10�3 2.08 � 10�3

10 1.03 � 10�3 1.03 � 10�3 1.04 � 10�3
range of between 1 and 100 is achieved under the condition
of GkeZ with A = 10.

Umax,st(Ha) decreases monotonically with the increase of
Ha due to the flow damping effect of the Lorentz force, as
shown in Fig. 3. Umax,st(Ha) becomes smaller with the
increase of A for BkeZ, while Umax,st(Ha) with A = 1 for
BkeX is almost similar to that for BkeZ. By applying mag-
netic induction at Ha = 40 and 200, Umax,st(Ha)’s for both
cases are damped similar to those under low-gravity accel-
erations of 1.6 � 10�3g0 and 1.6 � 10�5g0, respectively.
Fig. 4 shows the calculated results of contour plots for the
magnitude of the velocity, jUj/Umax,st(Ha), on X–Z and
Y–Z planes at Ha = 40 for GkeZ with A = 1, 5 and 10,
where Umax,st(Ha) is shown in Fig. 3. Convective roll arises
along the melt axis at Ha = 0, and the roll shifts to the cir-
cumference of the melt with the increase of Ha, because the
driving force of convection at the circumference is greater
than that on the melt axis, as mentioned above.

The difference in the damping effect between BkeZ and
BkeX conditions can be explained as follows. The Lorentz
force affects the flow perpendicular to the specimen axis
in the vicinity of Z = ±A for BkeZ. On the other hand,



Fig. 3. Umax,st(Ha) for Gr = 10 with n = 2.
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the force affects the flow parallel to the specimen axis in the
middle region for BkeX. The region dominated by the flow
in the vicinity of the Z = ±A surface for A = 1 has nearly
the same volumes as does that of the middle region, and
therefore the damping effect has no obvious dependence
on the direction of the applied magnetic field. The volume
of the former region becomes smaller relative to the total
volume with the increase of aspect ratio, and consequently,
the damping effect for BkeZ becomes smaller than that for
BkeX. Fig. 5 shows the contour plots of normalized Lorentz
force jJ � Bj/JBmax on X–Z and Y–Z planes at Ha = 40 for
GkeZ with A = 1, 5 and 10, where JBmax is the maximum
magnitude of the vector product J � B in melt. For BkeX,
the Lorentz force near the melt axis is almost parallel to
the axis, and the Z dependence of the Lorentz force is very
weak in the vicinity of the Z = 0 plane. Since the flow near
the Z = ±A surface has anisotropic radial components, it is
damped by anisotropic Lorentz forces. For BkeZ, the Lor-
entz force does not appear near the Z = 0 plane, because
the flow direction is almost parallel to B. The damping
effect of Lorentz force is yielded only in the vicinity of
the Z = ±A surface. It must be noticed that the electrical
field vanishes in Eq. (1) for axisymmetric flow under an
axial magnetic field in an electrically insulated container
[13]. Therefore, the damping effect of Lorentz force for
BkeZ with large A is weaker than that for BkeX, because
the region where Lorentz force affects the flow behavior
is small, whereas the current density J for BkeZ is higher
than that for BkeX.

Although the temperature distribution along the con-
tainer wall was assumed to be the square law of Z, we must
consider the case with a higher n value, taking account of
the influence of the configuration of the heater and the
container on the temperature distribution. Umax,st(Ha) for
GkeZ, A = 10, and Gr = 10 with n = 2, 4, and 6 is shown
in Fig. 6, where Umax,st(0)’s for n = 2, 4, 6 are 3.3 � 10�3,
1.1 � 10�2 and 2.4 � 10�2, respectively. As the n value
increases, the local temperature gradient in the melt
increases and thus Umax,st(0) increases. However,
Umax,st(Ha) is insensitive to the n value for BkeX, though
the dependence is obviously sensitive to the n value for
BkeZ. As a result, the minimum value of the normalized
maximum velocity is achieved for BkeX with GkeZ regard-
less of the n value.
4.2. Computed results for mass transport in transient state

The diffusion coefficient of a solute atom in melt D has
been experimentally determined from the concentration
profile along the specimen axis by the capillary method,
diffusion-couple method, or shear-cell method. Damping
of convection in melt is effective for improving the mea-
surement accuracy of the coefficient. It was described
in Section 4.1 that the damping effect of a magnetic field
on convection is obvious for BkeX with large A. The
large A is also preferable for the measurement, because



p Z¼0

Fig. 4. Contour plot of magnitude of velocity, jUj/Umax,st(Ha), on X = 0 and Y = 0 planes under condition of Gr = 10 with n = 2, Ha = 40, and GkeZ.
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the coefficient is usually calculated through comparison of
the measured distribution with the solution of a diffusion
equation by a curve-fitting method. In this section, the
transport of the solute atom under a magnetic field will
be discussed under the conditions of Gr = 10 and 100 with
A = 10, n = 2, GkeZ, and BkeX.

Mass transport in melt without convection in a one-
dimensional system is described as the following equation
derived from Eq. (7) with U = 0:

oC
ot
¼ o

2C

oZ2
: ð23Þ

For the diffusion-couple method, C (Z, t) is obtained using
the Fourier series by solving Eq. (23) with the boundary
condition (oC/oZ)Z=�A = (oC/oZ)Z=A = 0 and the initial
conditions C(�A, 0) = 0, C(0, 0) = 1/2 and C(A, 0) = 1, as
follows:

CðZ; tÞ ¼ 1

2
þ 1

A

X1
n¼1

1

an
sinðanZÞ expð�a2

ntÞ
� �

; ð24aÞ
an ¼
2n� 1

2A
p: ð24bÞ

The concentration gradient along the Z direction at Z = 0,
GC(t) = (oC/oZ)Z=0, is derived from Eq. (24) as

GCðtÞ ¼
1

A

X1
n¼1

expð�a2
ntÞ � 1

2
ffiffiffiffiffi
pt
p for t� A2=4: ð25Þ

Thus, the diffusion coefficient D can be approximated as
r2=4psG2

C for small t, if GC is measured experimentally
under the no-convection condition. The concentration
distribution in the X–Y plane is, however, usually inhomo-
geneous due to mixing by buoyancy convection under the
terrestrial condition. The concentration gradient on the
Z = 0 plane obtained experimentally after quenching
the melt is averaged in the cross-section of the melt by

G�CðtÞ ¼
1
Z
ðrN C � aÞdS: ð26Þ



Fig. 5. Contour plot of Lorentz force on X = 0, Y = 0 and Z = 0 planes under condition of Gr = 10 with n = 2, Ha = 40, and GkeZ.

Fig. 6. Umax,st(Ha) for Gr = 10 with n = 2, 4 and 6.
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The initial concentration Cinit for the calculation is
defined by taking account of the half-width of the transient
region d as follows:

CinitðX ; Y ; ZÞ ¼ 0 at � A 6 Z 6 �d; ð27aÞ

CinitðX ; Y ; ZÞ ¼
1

2
1þ 1

d
Z

� �
at � d < Z < d; ð27bÞ

CinitðX ; Y ; ZÞ ¼ 1 at d 6 Z 6 A: ð27cÞ

An alloy with a high solute concentration must be set in the
region 0 < Z 6 A in the diffusion couple for bS > 0 in order
to depress the convection, while it must be set in the region
�A 6 Z < 0 for bS < 0. Eqs. (5), (7) and (27) retain the
same forms even when bS, c0 and c1 are, respectively, re-
placed with �bS, c1 and c0. As a result, we treat only the
case of bS > 0 in this section, because the calculated result
for bS < 0 should be the same as that for bS > 0. The con-
centration difference Dc must be small, taking account of
the concentration dependence of D. Therefore, a’s are
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assumed to be 0, 1 or 10, respectively, which correspond to
Dc = 0 at.%, 1 at.% or 10 at.%, because the concentration
accuracy of electron probe microanalysis, which is often
used for concentration measurement in solids, is 0.1 at.%
at most. The other parameters are d = 0.1, and Ha = 0 or
40.

Since the experimental period of time for diffusion is
s = 1000 s at most in our research [2], the transient calcu-
lations were performed until t = 2. Fig. 7 shows Umax(0, t),
defined as the magnitude of the maximum velocity as a
function of Ha and t, for Gr = 100. We can see that
Umax(0, t) is constant regardless of a at 2 � 10�3 < t < 1
and Umax(0, t) when a = 10 is lower than that when
a = 0 or 1 at t > 1. The reason for the difference at
t > 1 is that the steep positive concentration gradient in
the vicinity of the Z = 0 plane in this melt, where the ini-
tial concentration distribution is set to be a stepwise func-
tion of Z, weakens the driving force of the convection.
The region with the steep concentration gradient affects
the convection behavior by acting as a stagnant layer.
The calculated concentration and velocity fields in the
melt are shown in Fig. 8. At the beginning of diffusion,
a weak convection roll appears in the stagnant layer
due to the steep concentration gradient in the vicinity of
the Z = 0 plane, and two strong convective rolls are gen-
erated from the layer. Umax(Ha, t) reaches a certain con-
stant value, and subsequently, the width of the stagnant
layer increases and the convective rolls move toward
Z = ±A with time.

Fig. 9 shows the average concentration gradient on the
Z = 0 plane under gravity, G�C, as a function of time. The
deviation of the diffusion coefficient obtained under gravity
D* from the true value can be evaluated by

eðtÞ ¼ ðD� � DÞ=D ¼ ðGC=G�CÞ
2 � 1 � ðGC0=G�CÞ

2 � 1;

ð28Þ
because the initial concentration distribution, Eq. (27), is
different from the value obtained using Eq. (24), but
Fig. 7. Umax (0, t) for Gr = 10 and 100 with n = 2.
GC0ðtÞ ¼ G�CðtÞ for Gr = 0 converges to 1=2
ffiffiffiffiffi
pt
p

within the
deviation of 10�3 at t = 2. As a result of the calculation,
both e(1) and e(2) are found to be less than 10�3 under
the convection-damped condition, such as (a = 1,
Ha = 0), (a = 10, Ha = 0), or (a = 0, Ha = 40), while
e(1) = 0.85 and e(2) = 0.88 for (a = 0, Ha = 0). The damp-
ing effect of the concentration gradient on the flow velocity
becomes obvious with the increase of a, as expected from
Eq. (5). In the case of a laminar flow condition for
Gr > 100, e(t) will increase with the increase of Gr for the
same a, and larger Ha will be required to damp the convec-
tion more effectively. The maximum concentration gradient
will decrease to zero with time, and the maximum velocity
will increase with the decrease of the width of the stagnant
layer under the condition ja$NCj < j$NTj. Finally, the
thermal convection will become a dominant flow under
the steady-state condition discussed in Section 4.1. The
present calculation supports the validity of the experimen-
tal result that the concentration gradient in the vicinity of
the joint surface of the diffusion couple damped the buoy-
ancy convection [14].

Are there no other volumetric forces in conducting
melt under a static magnetic field than gravity and Lor-
entz forces? A steep temperature gradient in a specimen
may induce some effects such as the thermoelectric volt-
age known as the Seebeck effect. This effect occurs
between a liquid and a solid of a metal if the Seebeck
coefficients are different. Kaneda et al. pointed out a pos-
sibility, on the basis of a numerical simulation, that Lor-
entz force, which is induced by the Seebeck current under
a static magnetic field, yields convection even under a
zero-gravity condition in the case of the container mate-
rial being electrically conductive [15]. In other words,
convection is not induced by the thermoelectrical effect
in a melt in an electrically insulating container. The
experimental result of a diffusion measurement performed
by Mathiak et al. [9] showed no obvious dependence of
magnetic field on diffusivity up to 14 T in In–Sn melt in
an insulating container. Therefore, we can consider that
the effect of externally applied static magnetic field on
the fluid behavior is simply due to Lorentz force of con-
ducting melt in an insulating container, as assumed in the
present calculation.

Consequently, a diffusion coefficient with high accu-
racy can be obtained experimentally for metal or semi-
conductor melt under the terrestrial condition if the
experiment is performed such that the fluid-dynamical
condition is satisfied with large a and Ha, and a segrega-
tion effect on the concentration distribution in the speci-
men can be suppressed during a quench process after the
diffusion. Small Dc is preferable for measuring D experi-
mentally, taking a concentration dependence of the coef-
ficient into account, while small a causes a decrease in the
period in which the concentration gradient in the vicinity
of Z = 0 affects the convection. Thus, a diffusion couple
with a large bS/bT ratio is suitable for the measure-
ment.



Fig. 8. Contour plots of magnitude of velocity and concentration fields in X = 0 planes at t = 1 for GkeZ.
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Fig. 9. Average concentration gradient on Z = 0 plane, G�C, as a function
of time.
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5. Conclusion

The application of a uniform magnetic field is a poten-
tial method for obtaining an accurate measurement of the
diffusion coefficient in an electrically conductive fluid,
and is also a promising substitute of the microgravity envi-
ronment. The results of the numerical simulation reveal the
following necessary conditions for a diffusion experiment
under a static magnetic field. (1) The melt must have a
small radius with a large aspect ratio. (2) The melt axis
must be parallel to gravity and the temperature gradient
along the axis must be small. (3) A uniform and strong sta-
tic magnetic field must be applied perpendicular to the melt
axis. (4) A high-concentration alloy must be set at the
upper side in the diffusion couple for a > 0, whereas the
alloy must be set at the lower side for a < 0. (5) Large a
is effective for damping the convection.
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